
fathat.org

Developing for the internet

fathat.org

What we will learn

Frontend and backend

Rest apis and http

security

fathat.org

modern INternet applications: frontend and backend software

Frontend Backend

What the user sees and interacts with
Browser Mobile App

Processes requested by client
Storage, computations, transactions

Behind the scenes, not visible to users

Modern Internet Applications have several components. One or more client Interface
applications that we all know and love (The frontends) and one or more backend servers that
provide resources to the clients frontend. Both front and back ends interacting together via
Http.

fathat.org

Customer representative communicates
with customer, and forwards any requests

to workers to be completed.

People behind the scene perform the actual
job and let the representative know the

result.

Newsreader presents to audience the news,
supported by others in the backoffice

preparing the content.

People in the backoffice prepare the news
content and guide the newsreader about

the program.

modern INternet applications: frontend and backend software

fathat.org

Frontend and backend: Tools

Frontend Backend

What the user sees and interacts with
Graphics, animation, forms

Processes requested by client
Storage, computations, transactions
Behind the scene, not visible to user

HTTP

fathat.org

Http for Web apps

Frontend code
run by browser

Frontend server
(Web server)

Backend server
(Application server)

GET /weather.html

Web pages for weather forecast
application

Code fetching the forecast data.

Request:
GET/data/2.5/weather?q=Fethiye
Response:
"weather": [
 {
 "id": 800,
 "main": "Clear",
 "description": "clear sky",
 "icon": "01n"
 }
],

fathat.org

API: Application programming interface
APIs are today part and parcel of software development for the internet and have become a standard way to offer services
across the internet. They live in the ether, that is on servers in the cloud.

An API is at its basic level is a set of what are called ‘Endpoints’ (an endpoint is equivalent to a specific service request on an
API) that allows other computers/software clients to request information or access a service. APIs are stateless, they do not
maintain a state, that is, there is no concept of doing something based on the changing condition of some entity over time.

The fundamental pattern of how APIs work is based on the http request/response workflow using something called REST
(representational state transfer), an architectural style for designing APIs. REST APIs are sometimes called RESTFUL APIs.

According to a set of predefined rules, a client requests some information from a specific API-endpoint and if the request is
granted (a legitimate request, both syntactically and semantically) the API responds accordingly.

Some APIs are totally open APIs they do not require authentication (passwords and or other credentials) to request a service
from an endpoint. Others have fully protected endpoints using various authentication methods such as oauth and JWT (JSON
WEB TOKENS), amongst others, whilst other APIs have both open and protected endpoints.

Many APIs are paid for services, whilst others are free. Google, Amazon, Twitter, Facebook… amongst a zillion other companies
all offer API’s for access to various services.

More on APIs

https://www.ibm.com/cloud/learn/rest-apis

fathat.org

API: an example API call to get weather information

https://api.openweathermap.org/data/2.5/weather?q=Fethiye&appid=7426fbdad185c2d61ec8d50ccf936400

Host address Path URL parametersProtocol

Enter this URL to your browser and press enter.

This is a GET request to the Weather API.

As response, you will get a JSON response with weather forecast of Fethiye, like this:
{"coord":{"lon":29.1164,"lat":36.6217},"weather":[{"id":803,"main":"Clouds","description":"broken
clouds","icon":"04d"}],"base":"stations","main":{"temp":289.08,"feels_like":288.11,"temp_min":289.08,"temp_max":289.08,"pressure":1026,"humidity":53,"sea_level":1026,"grnd_level":1024},"v
isibility":10000,"wind":{"speed":2.05,"deg":235,"gust":1.46},"clouds":{"all":65},"dt":1644665053,"sys":{"type":1,"id":6984,"country":"TR","sunrise":1644641724,"sunset":1644680419},"timezone":1
0800,"id":314967,"name":"Fethiye","cod":200}

Each API has a specification describing:

1) How to construct a request and 2) What kind of response to expect
 Examine the spec for this API at https://openweathermap.org/current

For example try &lat=&long= params and &mode=html and &mode=xml to see different responses.

Next, let’s understand what it is and how we can use it.

https://openweathermap.org/current

fathat.org

API: practically Every modern app on the internet has an api

● Facebook Graph API: https://developers.facebook.com/docs/graph-api/
● Instagram API: https://developers.facebook.com/docs/instagram-api/
● Google Maps API: https://developers.google.com/maps/documentation
● Twitter API: https://developer.twitter.com/en/docs/twitter-api
● Borsa/Doviz API:

https://collectapi.com/tr/api/economy/altin-doviz-ve-borsa-api

… And many more

https://developers.facebook.com/docs/graph-api/
https://developers.facebook.com/docs/instagram-api/
https://developers.google.com/maps/documentation
https://developer.twitter.com/en/docs/twitter-api
https://collectapi.com/tr/api/economy/altin-doviz-ve-borsa-api

fathat.org

Api: Open API for writing api specifications

OpenAPI is an open source standard for defining and writing API specifications. An API specification
is like a document that defines the details of an APi. For example

What requests can be made.
The paths of the requests - path to the endpoint
The type of request
The structure of the request
The data required for the request
The security required for requests

The response provided to each request
The data contained in the response

And more…

Study the following openAPI tutorial - you’ll need it for the project.

openapi: 3.0.0
info:
 version: 1.0.0
 title: Sample API
 description: A sample API to illustrate OpenAPI concepts
paths:
 /list:
 get:
 description: Returns a list of stuff
 responses:
 '200':
 description: Successful response

https://support.smartbear.com/swaggerhub/docs/tutorials/openapi-3-tutorial.html

fathat.org

Api: data exchange using json (javascript object notation)

Json has become a defacto standard for many developers for sending and receiving structured data.
It is similar to many data structures in programming languages, data objects in Javascript,
Dictionaries in Python, Maps in Java. It is widely used in APIs for incoming data in requests and
outgoing in responses.

Example: Weather forecast

Request: GET/data/2.5/weather?q=Fethiye
Response:
{
 "timezone": 10800,
 "id": 314967,
 "name": "Fethiye",
 "weather": [
 {
 "id": 800,
 "main": "Clear",
 "description": "clear sky",
 "icon": "01n"
 }
],
}

Each object is a list of key-value pairs.
Each key is a string.
Each value is either

- String
- Number (decimal)
- Boolean (true, false)
- Object (nested): {...}
- List of values: [...]

fathat.org

API: REST

GET: Read/retrieve information.
 Weather forecast, finance data, bank account balance

POST: Create/save new data
Open bank account, new exam, make bank transaction.

PUT: Update existing data
 Update phone number, change student grade

DELETE: Delete data
Unregister student, close bank account

There are a number of http methods used for accessing REST APIs.

fathat.org

API: Http for Web apps: Separation of frontend and backend services

Browser

Frontend server
(Web server)

Backend server
(Application server)

GET /index.html
GET /banner.jpeg
GET /main.css
GET /utils.js

HTML/CSS/JavaScript and others
(images, vides, PDFs, Word docs):
Static in server; runs on client.

Backend code: Runs on server

GET /studentById
POST /addStudent
PUT /updateStudent
DELETE /deleteStudent

REST APIs

fathat.org

Api: REST examples by use cases

Use case GET (READ) POST (read) PUT (update) DELETE

School app Get student info by school id Register new student Change contact info of
student

Unregister a student

Bank app Get account balance
Get credit card statement

Open new account
Send new transaction

Set withdrawal limit for
account or credit card

Delete bank account
Cancel a transaction

Chat app Search in messages Send new message Edit previous message Delete a message

fathat.org

Frontend and backend communitate with http
HTTP is an application layer protocol, uses TCP/IP protocols to send data to other side in reliable way.

IP

TCP

TLS

HTTP

IP

TCP

TLS

HTTP

App Frontend App backend

fathat.org

Frontend languages: HTML / CSS / Javascript

HTML - Hypertext Markup Language
Content and Structure
Paragraphs, tables, lists

CSS - Cascading Style Sheets
Presentation
Layout, Font, color, border, size

JavaScript
Behavior
Dynamic view, user interactions, clicks, server calls

fathat.org

Frontend languages: HTML / CSS / Javascript

<html>
 <button id="btn" class="buttons">0</button>
</html>

.buttons {
 color: blue;
 font-size: 12px;
}

document.getElementById("btn").addEventListener("click", function() {
 var current = document.getElementById("btn").innerText;
 document.getElementById("btn").innerText = parseInt(current) + 1;
});

fathat.org

Authentication and Authorisation
Authentication and Authorisation are extensive subjects in their own right. We will go over the main
aspects so that you have a general understanding about some of the methods used.

The main reason for their existence is clear:

Managing access to resources

Not all resources in the Internet are free.

● Only YOU should see your child’s e-Devlet information.
● Only YOU or BANK AGENT should make a bank transaction.
● Only YOUR TEACHER should add enter exam grade.

Two problems to solve:

1. How to identify that YOU are the user
a. Authentication: Identify users

2. How to ensure you get and modify ONLY YOUR data
a. Authorisation: Check permissions

fathat.org

Authentication: identify users

Types of authentication:

● Password based
○ Include username+password at every request

● Multi-factor
○ Username+password, plus a code sent to email/phone

● Certificate-based
○ Send public key to to prove the right identity

● Biometric
○ Fingerprint/eye scan

● Token-based
○ First send username+password, and then use token

fathat.org

Authentication: basic

Client Server

GET /some/path

401 Unauthorized
WWW-Authenticate: Basic realm="User Visible Realm"

GET /some/path
Authorization: Basic BASE64ENCODEDUSERNAMEANDPASSWORD

200 OK (with data)

Check if username/password
is correct

fathat.org

Authentication: session based

Client Server

POST /login
{ “username”: “...”, “password”: “...” }

200 OK
Session ID in cookies

GET /some/path
Session ID from cookie

200 OK (with data)

GET /some/other/path
Authorization: Bearer <JWTTOKEN>

200 OK (with data)

Store Session ID in
cookie

Retrieve session data from
memory/DB by Session ID

Check if username/password is correct

Store session data in memory/DB

Retrieve session data from
memory/DB by Session ID

fathat.org

Authentication: token based

Client Server

POST /login
{ “username”: “...”, “password”: “...” }

200 OK
Auth-Token: <JWTTOKEN>

GET /some/path
Authorization: Bearer <JWTTOKEN>

200 OK (with data)

GET /some/other/path
Authorization: Bearer <JWTTOKEN>

200 OK (with data)

Store token in client

Check if token is valid

Check if token is valid

Check if username/password is correct

Generate and sign JWT token

fathat.org

Authentication: Jwt - JSON web tokens

Header
(JSON)

Secret

Payload
(JSON)

Sign algorithm

base64(Header).base64(Payload).base64(Signature)

Client

Server

Header
(JSON)

Payload
(JSON)

Verify algorithm

base64(Header).base64(Payload).base64(Signature)

Client

Server

Client stores token and sends to server with every request
Client can see header and payload

(ONLY server
knows the secret)

fathat.org

Base-64 encoding and decoding

Base-64
encoding

1010010111010101….

(Binary data)
Base-64
decoding

1010010111010101….

(Binary data)
eyJzdWIiOiIxMjM0NT….

Base-64 is a group of algorithms to represent raw binary data as textual data, for sending this data in a
channel that only supports text-based data.
All data is encoded into 64 characters.

Channel sending text-based data
(eg. HTTP headers)

fathat.org

Authorisation: Checking permissions

● User roles:
○ Basic user, Admin, Power User etc.
○ Each has access to certain operations

● Scopes:
○ Indicates which operations allowed by a token
○ Token are generated to contains scopes, indicating which operations can be

performed when that token is provided

